The Kernel Kalman Rule - Efficient Nonparametric Inference with Recursive Least Squares

نویسندگان

  • Gregor H. W. Gebhardt
  • Andras Gabor Kupcsik
  • Gerhard Neumann
چکیده

Nonparametric inference techniques provide promising tools for probabilistic reasoning in high-dimensional nonlinear systems. Most of these techniques embed distributions into reproducing kernel Hilbert spaces (RKHS) and rely on the kernel Bayes’ rule (KBR) to manipulate the embeddings. However, the computational demands of the KBR scale poorly with the number of samples and the KBR often suffers from numerical instabilities. In this paper, we present the kernel Kalman rule (KKR) as an alternative to the KBR. The derivation of the KKR is based on recursive least squares, inspired by the derivation of the Kalman innovation update. We apply the KKR to filtering tasks where we use RKHS embeddings to represent the belief state, resulting in the kernel Kalman filter (KKF). We show on a nonlinear state estimation task with high dimensional observations that our approach provides a significantly improved estimation accuracy while the computational demands are significantly decreased.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel extended kernel recursive least squares algorithm

In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden ...

متن کامل

KALMAN FILTERING IN REPRODUCING KERNEL HILBERT SPACES By PINGPING ZHU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy KALMAN FILTERING IN REPRODUCING KERNEL HILBERT SPACES By Pingping Zhu May 2013 Chair: José C. Prı́ncipe Major: Electrical and Computer Engineering There are numerous dynamical system applications that require estimation or prediction from...

متن کامل

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthes...

متن کامل

Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering

Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given moto...

متن کامل

Least Squares and Kalman Filtering on Forney Graphs

General versions of Kalman filtering and recursive least-squares algorithms are derived as instances of the sum(mary)-product algorithm on Forney-style factor graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017